Posts

A Horizontal Open Loop Geothermal Energy Heat Pump.

Decarbonizing buildings with geothermal energy heat pumps 

A Horizontal Open Loop Geothermal Energy Heat Pump.

RENEW Energy Partners specializes in funding energy-saving retrofits for your commercial, industrial, and institutional buildings. We install many different technologies to make your buildings more efficient and reduce your energy bill. One strategy for significant savings is upgrading your HVAC systems to use geothermal energy.

What is geothermal energy?

Geothermal energy is a form of renewable energy that takes advantage of the temperature difference between the air outside and deep underground. Underground temperatures are more stable than above ground. This effect is exaggerated the deeper you go, with underground temperature stabilizing at about 10 degrees Celsius (50 degrees Fahrenheit) 30 feet under the ground all year. Moving heat from the ground in the winter and to the ground in the summer can dramatically reduce the energy required to meet a building’s heating and cooling needs year-round.

Significant progress has been made in over the last decade in reducing electricity use in buildings and installing renewable sources of electricity such as on-site solar, but the same has not been true of building heating and cooling systems which typically center on oil or natural gas fired boilers. RENEW Energy Partners can fund installation of geothermal heat pumps as an energy-saving retrofit and as a part of new construction, and thereby reduce reliance on fossil fuels on site, reduce energy costs, and reduce a building’s carbon footprint.

What are geothermal energy heat pumps?

Just as an air-source heat pump moves heat through the air from the inside to the outside in summer and from the outside to the inside in winter, a ground-source heat pump uses the heat from the Earth instead of the air. Because the temperature underground is a constant 50F, fluctuating much less than air temperatures, geothermal heat pumps can more efficiently heat and cool buildings than their air-source counterparts.

In colder climates, it is common to incorporate an electric heat source to provide supplementary or backup capacity. Heat pumps can be more environmentally friendly since they do not burn fossil fuels like oil or gas furnaces. Because these systems utilize that constant 50F heat from the earth they may also consume less energy than boilers or furnaces to provide the same heat, lowering a building’s energy cost.

Water Source Geothermal Heat Pumps (WSHP)

While ground-sourced heat pumps are what most people think of when they think of geothermal, water-source geothermal heat pumps are equally useful. They use bodies of water as a heat sink or source. This is often groundwater beneath the earth’s crust but can also be from a nearby body of water.

Types of Geothermal Heat Pump Systems:

Ground Loop Systems

Geothermal heating and cooling systems can be categorized into two types: open loop and closed loop. Open loop systems interact directly with the water source, whereas closed loop systems interface with the water source via a loop of coils of plastic tubing connecting in and out of the building. While closed loop systems tend to be the most common, the system choice depends on factors such as climate, soil conditions, available land, and installation costs. All buildings can utilize these systems, but they are especially cost effective when performing large retrofits for commercial, institutional, and industrial buildings.

Geothermal Heat Pump - Closed Loop System

Open Loop Systems 

Open loop systems in geothermal heat pump (GHP) systems use well or surface body water as the heat exchange fluid. The water circulates directly through the GHP system and then returns to the ground through a well, recharge well, or surface discharge.

 

 

 

 

 

Closed Loop Systems

Closed-loop geothermal heat pump systems, commonly used in geothermal heating and cooling, circulate an antifreeze solution through an internal plastic tubing circuit buried in the ground or submerged in water. The heat exchanger plays a vital role in transferring heat between the refrigerant in the heat pump and the antifreeze solution. Another type of closed-loop system called direct exchange, uses copper tubing buried in the ground without a heat exchanger.  The three types of closed loop systems are horizontal, vertical, and pond/lake.

Geothermal Heat Pump - Closed Loop Horizontal

Horizontal Systems

The horizontal loop system is the most cost-effective installation for geothermal systems, particularly in residential settings. The most common layouts involve using two pipes buried at different depths or side-by-side in a trench. This requires a shallower dig but requires more land relative to its capacity.

 

 

 

 

Geothermal Heat Pump System - Closed Loop Vertical

Vertical Systems

Large commercial buildings and schools often have land as a constraint. Vertical systems help bypass these limitations by using shallow soil while minimizing disruption to existing landscaping. Dig costs can be significantly higher than a horizontal system.

 

 

 

 

 

Geothermal Heat Pump System - Closed Loop Pond-Lake

Pond/Lake Systems

These systems could be the most affordable option if a system has access to a body of water. A supply line pipe is run underground from the building to the water and coiled into circles at least eight feet under the surface to prevent freezing. The coils should only be placed in a water source that meets minimum volume, depth, and quality requirements.

 

 

 

 

Hybrid Systems

Hybrid systems combine different geothermal resources or a geothermal resource with outdoor air (such as a cooling tower). They are a viable technological option for meeting cooling needs greater than heating needs.

How can the use of Geothermal Heat Pumps reduce carbon emissions?

Geothermal heat pumps (GHPs) can significantly reduce carbon emissions by utilizing the Earth’s natural heat. Specifically:

High Efficiency

Efficiency is a major strength of geothermal systems. These systems transfer heat between the building and the ground, which requires less energy than traditional HVAC systems. This increased efficiency leads to reduced energy consumption and lower greenhouse gas emissions. For more information on HVAC upgrades using heat pumps, see our blog post on the future of HVAC retrofits. 

Renewable Energy Source

Geothermal heat pumps provide a renewable energy source for heating and cooling systems. Unlike fossil fuel-based systems, these pumps extract heat from the Earth’s core, continuously generating heat through natural processes. This ensures a consistent and sustainable energy supply for the heat pump.

Lower Electricity Demand

Since geothermal heat pumps require less energy to operate than conventional HVAC systems, they can help reduce the overall electricity demand of a building. Lower electricity consumption means fewer emissions from power plants, especially if the electricity is generated from fossil fuels.

No Combustion Emissions

Geothermal heat pumps do not burn any fuel to produce heat. Instead, they use electricity to facilitate heat transfer. This absence of combustion emissions eliminates the release of carbon dioxide (CO2) and other harmful pollutants associated with traditional heating systems, such as gas or oil furnaces.

Heat Recovery

Geothermal exchange systems can recover waste heat from cooling processes and utilize it for other purposes, such as water heating. This improves their energy efficiency and reduces their reliance on additional energy sources.

Long Lifespan

Geothermal heat pumps generally have a longer lifespan than traditional HVAC systems. Their underground components can last for decades in areas that aren’t tectonically active, reducing the need for frequent replacements and associated manufacturing emissions.

Grid Independence

In some cases, geothermal heat pumps can be used in off-grid or remote locations where connecting to a centralized power grid might be difficult or environmentally damaging. They can mitigate the environmental impact of extending power infrastructure to these areas by operating independently.

What are the financial benefits of using geothermal energy for building owners?

Reduced Energy Costs

Geothermal heat pumps are energy-efficient and can greatly reduce the energy used for heating and cooling. Building owners implementing this energy retrofit can expect to see savings in energy costs, with noticeable results within a few years. The exact amount of savings will vary depending on factors such as the size and location of the building, as well as energy prices. However, it is common for building owners to experience significant reductions in utility bills.

Enhanced Property Value

Retrofitting commercial buildings to implement geothermal energy heat pumps may increase property value and market appeal. Energy-efficient and sustainable features can attract potential buyers or tenants, creating a competitive advantage in the real estate market.

Access to Incentives and Tax Benefits

Many governments and local authorities offer incentives and tax benefits to encourage the adoption of renewable energy for building decarbonization, including geothermal. Building owners may be eligible for grants, tax credits, or other financial incentives to offset the initial installation costs and improve the financial viability of the geothermal energy project. For instance, the Department of Energy has announced $13 Million to support geothermal heating and cooling in communities.

Positive Public Image

Renewable energy technologies like geothermal can enhance a building owner’s reputation and brand image. Demonstrating a commitment to sustainability and environmentally responsible practices can resonate positively with customers, stakeholders, and the broader community.

No matter how you decide to implement energy efficiency measures in your building, these kinds of projects require funding. To fund an energy efficiency project for your building(s), RENEW Energy Partners offers an energy service agreement (ESA). The Energy Service Agreement:

  • It may be treated as an off-balance sheet transaction. In that case, you do not own or carry the asset on your balance sheet (consult your tax advisor to evaluate your options).
  • RENEW provides preventive and corrective maintenance in the service agreement.
  • Your payment to RENEW will be based on the energy savings confirmed once the system is operational. 

The RENEW Energy Service Agreement allows businesses to focus on what they do best while ensuring that their facilities are performing at their peak with brand-new and high-efficiency equipment. In this current climate of cost control and resource allocation, the energy service agreement is the perfect solution to help businesses meet sustainability goals and keep facilities in top condition. Reach out to RENEW and talk to us about financing your energy-saving retrofits today.

Sources: DOE

HVAC Retrofits

The Future of HVAC Retrofits

HVAC Retrofits

RENEW Energy Partners specializes in funding energy efficiency retrofits for your commercial, industrial, and institutional buildings. There are many different technologies we can install to make your buildings more efficient and reduce your energy bill. One strategy for significant savings is to upgrade to your commercial HVAC systems to heat and cool your building more efficiently.

The Future of HVAC Retrofits

For our last two blog posts we have talked about HVAC, its history, current technology, and its important role in energy efficiency retrofits. But beyond the basics, there is newer technology that promises to be the future of HVAC retrofits. This technology shift is often referred to as electrification.

HVAC Electrification:

Electrification, or converting your heating from fossil fuel burning systems to electric, is a common and effective energy efficiency retrofit that will further decarbonize your building and could eliminate your gas, oil, or steam utility bills. Just like the rapid advancement of electric vehicles, there is no point of use emissions. Your buildings environmental impact is now tied to the local utility grid carbon intensity. Combining full building electrification and either on-site or off-site renewables allows buildings to be carbon net-zero.

The two most common HVAC retrofit projects include heat pump and electric boiler installations. Heat pumps in particular are a revolutionary invention because they can address both heating and cooling, sometimes simultaneously, and are always more energy efficient than burning a fossil fuel on site.

What are Heat Pumps?

In simple terms, a heat pump moves heat from a cold place to a warm place. They are powered by electricity and transfer heat using compressors and a refrigerant. In cooler months, this can mean pulling heat from the cold outdoor air and transferring it indoors.  In warmer months, they can pull heat out of indoor air to condition a space. In colder climates, a secondary electric heat source can be added for additional or backup capacity. Heat pumps do not burn fossil fuel like an oil or gas furnace does, making them more environmentally friendly. Additionally, because they move heat instead of generating it, heat pumps will only consume between 20% and 50% of the energy input that a boiler or furnace (even an electric one) would need to provide the same amount of heat.

There are a few different types:

  • Air Source Heat Pumps: Air source heat pumps absorb heat directly from the air. They are not as effective in cold weather, as there is a minimum air temperature at which they can operate (depending on the refrigerant used). Air source heat pumps generally work best in mild climates or during the “shoulder season” – temperatures between 5 and 25 degrees Celsius (between 41 and 77 degrees Fahrenheit), though some can operate below freezing at a reduced capacity.
  • Ground Source Heat Pumps: These heat pumps absorb heat from the ground. In cold weather, ground source heat pumps are more effective than air source heat pumps, because the ground retains heat through the winter. In most cases, the ground temperature will stay above 5 degrees Celsius (41 degrees Fahrenheit) allowing for year-round operation. This can also be called a geothermal heat pump.
  • Water Source Heat Pumps: In addition to pulling heat directly from the air and ground, heat can be conducted via water from almost any other heat source. Water can contain more heat than air can (think about a cast iron pan cooling in the air vs being doused with cool water), which is why many buildings already distribute heat with water. By integrating with the existing building infrastructure, these heat pumps can make use of energy that may currently be going to waste, such as the heat rejected from refrigeration or a data center. In this case, the name can be confusing because “water source” is misleading – the water is the medium but not the ultimate “source” like air or ground are for the other examples above. A water source heat pump is a general term for a heat pump that uses any other heat source as an input, conducted to it via water piping. There are also true “water source” heat pumps that can pull heat from a lake or river, but they’re uncommon. Four-pipe heat pumps can heat and cool, but not simultaneously. Six-pipe heat pumps (and some specialized “heat recovery style” four-pipe systems) can heat and cool at the same time, which is ideal for buildings that require heated office space as well as significant amounts of freezer storage. Read more about water saving retrofits here.

What are the Electric Boiler Options?

  • Electric Boilers: Electric heaters are powered by electricity, whether from the electric grid or stored in batteries. Typically, electric boilers can transfer 100% of their provided electrical energy into heat, though there are slight losses in the electric and heat distributions. They are safe, energy efficient and affordable. Cons include that they are affected by power outages.
  • Electric Infrared Heaters: An infrared heater is typically more efficient than a standard electric boiler, as there are fewer losses in distribution. 100% of the energy produced can be kept in the conditioned space. An infrared heater also has more power options. They can be powered by electricity, but also by propane and natural gas (which would bring up the carbon footprint and is not recommended for an energy efficiency retrofit).

Conclusion

To summarize, when contemplating an energy efficiency retrofit project, implementing HVAC retrofits to your systems is a crucial way to decarbonize and save money. While you can update more traditional fossil-fuel-powered heating and cooling modules to be more energy efficient, the most progressive update you can make is to electrify your HVAC. This will lower your bills, decarbonize your building, and will benefit the health of all employees. It will also clearly position you and your company as a leader in carbon reduction.

No matter how you decide to increase your energy efficiency and decrease your carbon footprint, these kinds of project require funding. In order to fund an energy efficiency project for your building(s), RENEW Energy Partners offers an energy service agreement (ESA). The Energy Service Agreement:

  • Can be treated as an off-balance sheet transaction. You do not own the asset or carry it on your balance sheet. (Renew does not provide accounting advice. Our customers consult their own accounting teams on accounting treatment).
  • RENEW provides preventive and corrective maintenance in the service agreement.
  • Your payment to RENEW will be based on the energy savings confirmed once the system is operational.

Unlike a lease or a loan, which are on balance sheet, do not include maintenance, and may or may not deliver energy savings, the service agreement provides all of the above and then some:

  • Executing a service agreement is fast – once the project is scoped by an energy professional (and we can recommend one), you execute a simple service agreement contract and RENEW will fund the project.
  • Executing a service agreement frees up your capital budget for your other priorities, allowing you to focus on growing your core business.
  • Executing a service agreement now means your net cash flows are higher than waiting and doing it yourself in a year.
  • And finally – executing a service agreement means flexibility. Perhaps you buy another building or look at additional efficiency measures–with a one-page addendum to your existing ESA you can have those new lights, HVAC, and controls at your new building, and you simultaneously reduce your operating expense!

The RENEW Energy Service Agreement allows businesses to focus on what they do best, while ensuring that their facilities are performing at their peak with brand new, and high-efficiency equipment. In this current climate of cost control and resource allocation, the energy service agreement is the perfect solution to help businesses meet sustainability goals and keep facilities in top condition. Reach out to RENEW and talk to us about financing your energy saving retrofits today.

Contact Us

Learn how we can help you save money and decarbonize your buildings!

"*" indicates required fields

This field is for validation purposes and should be left unchanged.
© 2023 Renew Energy Partners, LLC. All Rights Reserved.